An Exponential Lower Bound on OBDD Refutations for Pigeonhole Formulas
نویسندگان
چکیده
منابع مشابه
An Exponential Lower Bound on OBDD Refutations for Pigeonhole Formulas
Haken proved that every resolution refutation of the pigeon hole formula has at least exponential size. Groote and Zantema proved that a particular OBDD computation of the pigeon hole formula has an exponential size. Here we show that any arbitrary OBDD refutation of the pigeon hole formula has an exponential size, too: we prove that the size of one of the intermediate OBDDs is at least Ω(1.025).
متن کاملAn exponential lower bound for Cunningham's rule
In this paper we give an exponential lower bound for Cunningham’s least recently considered (round-robin) rule as applied to parity games, Markhov decision processes and linear programs. This improves a recent subexponential bound of Friedmann for this rule on these problems. The round-robin rule fixes a cyclical order of the variables and chooses the next pivot variable starting from the previ...
متن کاملOrdered Binary Decision Diagrams, Pigeonhole Formulas and Beyond
Groote and Zantema proved that a particular OBDD computation of the pigeonhole formula has exponential size, and that limited OBDD derivations cannot simulate resolution polynomially. Here we show that an arbitrary OBDD refutation of the pigeonhole formula has exponential size: we prove that for any order of computation at least one intermediate OBDD in the proof has size Ω(1.14n). We also pres...
متن کاملAn Exponential Lower Bound on the Complexity of Regularization Paths
For a variety of regularization methods, algorithms computing the entire solution path have been developed recently. Solution path algorithms do not only compute the solution for one particular value of the regularization parameter but the entire path of solutions, making the selection of an optimal parameter much easier. It has been assumed that these piecewise linear solution paths have only ...
متن کاملAn Exponential Lower Bound for Cut Sparsifiers in Planar Graphs
Given an edge-weighted graph G with a set Q of k terminals, a mimicking network is a graph with the same set of terminals that exactly preserves the sizes of minimum cuts between any partition of the terminals. A natural question in the area of graph compression is to provide as small mimicking networks as possible for input graph G being either an arbitrary graph or coming from a specific grap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Proceedings in Theoretical Computer Science
سال: 2009
ISSN: 2075-2180
DOI: 10.4204/eptcs.4.2